
Magnetic Dipoles 

For mechanical-damage defects, the MFL signal appears to have a natural asymmetry. 
The asymmetry is not well understood but is related to the direction in which the defect 
is magnetized. That is, the asymmetry is a function of the orientation of the magnetizer's 
north and south poles relative to the defect. The magnetic dipole is always oriented in 
one direction relative to a magnetizer and is superimposed on the MFL signal caused by 
the damage itself. 
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The figures shown above illustrate the dipole. The top two figures represent inspection 
signals from two different directions for a symmetric defect (some of the data in the top 
right figure is clipped). The figure at the lower right is the reverse of the figure on the 
upper left. If the two top-most signals were mirror images of each other, the two right- 
hand signals should be nearly identical. They are not. 

Away from the center of the two signals, the far field is similar. The general pattern is 
the same in both signals, with nearly identical signal strength (color) and shape of 
dominant signal features. Here, the signals appear to be mirror images of each other 

In the center of the defect, the two signals do not match. The lower right signal has a 
definite peak (red spot) near the left center of the defect. There is no corresponding 
peak on the upper right signal. 
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Subtracting the two figures on the right highlights the difference, which is shown in the 
lower left plot. The far field in this plot corresponds to a low level signal, which is 
probably the result of material property variations. In the center, there is a negative peak 
(dark blue in color) and a positive peak (yellow red) -the signal of a dipole. 

Possible Basis for 
Dipole 

A possible explanation of 
the dipole is that it results 
from magnetic domains 
being held in place by 
very high stress and 
strain gradients around 
the defect. When the pipe 
is magnetized, as shown 
in the right, the domain 
boundaries on either side 
of the defect along the Domain Boundaries Locked, Act Like a Mini-Magnet 
pipe axis can be locked 
by strain gradients, creating a mini-magnet with north and south poles. The strength of 
this mini-magnet depends on the stress and strain gradient and the strength of the 
magnetizing field. 

Pipe Wall with 

Magnetizing Field 
Hc - 0, if Field Removed 

Residual stresses and 
plastic strains around a 
mechanical damage defect 
create changes in 
permeability. The 
measured field is inversely 
proportional to the change 
in permeability. As the 
change in permeability 
increases near areas of 
mechanical damage, the 
measured sianal decreases 
and produc& a 
characteristic dip in the flux 
leakage signal. 

Large Residual Stress 
Large Sress Gradients 

The dipole created by the mini-magnet adds to the signal at one end and subtracts at 
the other end of a mechanical damage defect. Because the magnetic domain 
boundaries are locked, the mini-magnet can align itself with the magnetizing field. 
Hence, it always aligns itself with the magnetizing field. 
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Implications 

The direction of magnetization with respect to the defect must be considered when a 
dipole is created. Since MFL signals are a function of defect characteristics, 
characterization will be difficult when a dipole is present. 

If the above explanation of the formation of the dipole is correct, the strength of the 
dipole should relate to the gradients of stress and strain in and around a gouge. The 
strength should also relate to the positions of maximum gradients - that is, it should be a 
function of the length, depth, and width between areas of maximum gradient. Using this 
knowledge, it may be possible to develop analysis procedures (and tool geometries) 
that take advantage of the dipole to provide improved defect characterization. 
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Overview of Nonlinear Harmonic Method 

Non-linear harmonics (NLH) refers to the use of an eddy current technique that is 
sensitive to the state of stress and plastic deformation in steel. Magnetic properties are 
affected by stress and deformation. As a result, harmonics of an input signal can be 
generated by the hysteretic characteristics of the magnetic properties of the pipe steel. 
In practice, the method begins with the application of a sinusoidal magnetic field at a 
fixed frequency to a material. A detector is used to sense odd-numbered harmonics of 
that frequency (typically the 3rd harmonic). 

The following figure shows an excitation waveform as a solid line. The secondary 
voltage whose distortion represents a high third harmonic content is shown as a dashed 
line. This third harmonic can be detected using bandpass filtering or a lock-in amplifier. 
Because measurements can be accomplished using a relatively high excitation 
frequency, the method should lend itself to rapid scanning, and thus could be readily 
implemented on an inspection pig. 

Nonlinear Harm on ic Waveform 

For more information on the effects of stress on nonlinear harmonic response, refer to 
Effects of Stress on the Harmonic Content of Magnetic Induction in Ferromagnetic 
Material . 
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Details on Nonlinear Harmonics Measurements 

NLH Measurement Program 

The use of nonlinear harmonic technology for detecting and measuring stresses around 
a mechanical damage defect was evaluated in this program. The block diagram given 
below shows the system connections and instrumentation used for the nonlinear 
harmonic system. In Task 1, fundamental data were collected to demonstrate and 
quantify the sensitivity of nonlinear harmonics to applied stress and plastic deformation. 
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Nonlinear harmonic schematic 

Using dog-bone and cruciform samples, small nonlinear harmonic probes were used to 
collect third-harmonic data as the samples were loaded both within and beyond the 
elastic range. The magnetic permeability of steel changes with applied stress and 
plastic deformation, and previous work also indicated that the nonlinear harmonic output 
changes with changes in magnetic permeability. It follows then, that nonlinear harmonic 
output should be an indicator of applied stress and plastic deformation. The laboratory 
experiments demonstrated that capability. 

Following the initial laboratory experiments, several test specimens were fabricated with 
different types and severities of mechanical damage. The specimens were scanned with 
nonlinear harmonic probes oriented with the magnetic field in orthogonal directions. 
Amplitude and phase of the fundamental and third harmonic were collected and were 
used to generate line plots and color surface maps. These plots showed that nonlinear 
harmonic could be used to detect the stressed area around a mechanical damage 
defect . 
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Parameters that were varied included probe size, excitation frequency and probe 
orientation. There was also an initial evaluation of probe lift-off effects. The following 
figure shows a typical two-dimensional response to an undisturbed plate and a plate 
that has experienced plastic deformation. The figure on the left shows the initial 
nonlinear harmonic response, and the figure on the right shows the response after 
plastic strain has been applied. The change in signal is an indicator of the amount of 
strain that has accumulated. 

Results to date show that it may be possible to use nonlinear harmonics to detect the 
stressed area around a mechanical damage defect. Additional parameters that are 
being studied include probe size, excitation frequency and probe orientation. There is 
also an evaluation of probe lift-off effects. This work is continuing, and conclusions will 
be drawn later in the program. 
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Nonlinear harmonic plots 

For more information on nonlinear harmonic measurements, refer to Nondestructive 
Measurement of Stress in Ferromagnetic Steels Using Harmonic Analysis of Induced 
Voltage and Application of the Nonlinear Harmonic Method to Stress Measurement in 
Steel. 
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Evaluation of Liftoff Effects 
Apparatus 

A NLH sensor is essentially a transformer 
whose core is composed of the ferrite core 
within the sensor plus the pipe material 
itself. There is a necessary air gap 
between the ferrite core and the pipe. The 
length of this gap, called "standoff', 
controls the amount of magnetic coupling 
between the primary and secondary 
windings of the sensor. As the gap 
increases, the amount of energy put into 
the workpiece drops with a resulting drop 
in NLH sensitivity. 

If a probe is held is a position with one air 
gap and then is moved to a position with a 
different air gap, there will be an NLH 
signal from the sensor, even though the 
properties of the pipe wall may not have 
changed. Such a change in standoff can 
occur if the sensor passes over a deposit 
adhering to the pipe surface, or if it 
bounces off the pipe due to mechanical 
impact. 

To evaluate the lift-off effect, a test apparatus was assembled, as shown at right. The 
apparatus consisted of a segment of 24-inch pipe onto which a computer controlled 
scanner was attached. An NLH sensor was spring loaded against the pipe surface and 
scanned in an axial track down the specimen. 
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Before passing near the 
dent, the sensor was 
caused to ride over a 
non-metallic bump that 
momentarily changed the 
standoff. The resulting 
NLH waveform then 
shows both the bump 
(lift-off) and the dent, as 
shown at right. 
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With this set-up it is 
possible to evaluate 
probe operating 
parameters in the way 
they affect the relative 
strength of dent and lift- 
off. For example, 
successive scans at 
different excitation 
frequencies reveal the 
effect of frequency on 
the NLH response. If 
the ratio of dent to 
bump signals is plotted 
as a function of 
frequency, it is noted 
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that the best operating point is at the highest frequency (see below) 
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In addition to the 
bump, fixed 
amounts of lift-off 
may be added to 
the system by 
adding various 
thickness shims to 
the bottom of the 
sensor, i.e. 
between the sensor 
and the pipe 
surface. It is 
important to protect 
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the NLH sensor core and windings from damage by contact with pipe wall irregularities 
and debris in the pipeline. A non-conductive material can be added to the sensor face to 
provide protection, but it also adds lift-off. By running successive scans with increasing 
thickness of non-metallic shims, a curve of dent and bump amplitudes and ratio can be 
developed. 

For more 
information on the 
effects of stress on 
nonlinear harmonic 
response, refer to 
Effects of Stress on 
the Harmonic 
Content of 
Magnetic Induction 
in Ferromagnetic 
Material . 
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Details on Quantitative Damage Measurements 
An important aspect of any system 
for detecting mechanical damage is 
how well it is able to characterize the 
detected damage. Although methods 
for precise assessment of 
mechanical damage have not been 
clearly established, there are some 
generally accepted guidelines that 
make it possible to assign relative 
severity ratings to mechanical 
damage defects. 

To evaluate the NLH ability to 
characterize mechanical damage 

defects, seven artificial defects were scanned with an NLH probe, using the same settings in 
each case. The defects were various combinations of dents and gouges of different depths and 
lengths. All defects were in 2-foot square coupons of 24-inch pipe. All defects were scanned in a 
2D matrix of sample points and data were reduced to color maps of NLH output. Data were taken 
with the probe in axial alignment with the pipe and also perpendicular alignment, 
Correlation of the physical description of 
the defect and the NLH signal is 
apparent by examination of the data 
output (see below - each photograph and 
signal is a link). One particularly 
interesting defect is No. 28, a gouge 
without dent. A contour plot shows that 
there is an easily recognized signal 
pattern that corresponds to the defect 
geometry even though there is no 
residual deformation of the pipe inside 
surface . 
A simple round 
dent, defect 87, 
produces a 
similarly shaped 
contour pattern. 
The NLH ability 
to detect the 
whole range of 
defects with a 
good signal to 
noise ratio is 
illustrated in 
sinale-trace dots 

197 



across the defect 
centers, including 
a plate with no 
defect to 
i I I  ustrate typica I 
noise level 
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Careful examination of the single-trace plots and the severity table shown above shows that 
even though there is good detection of all the defects, there is not a clear indication of defect 
severity in the relative NLH signal amplitudes. This suggests that the NLH data should be 
considered in consort with other measurement technologies for determining severity of 
mechanical damage. 
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Introduction to Neural Networks[Haykin991 . -  

A neural network is an analysis method that uses a large number of relatively simple 
calculations to make a prediction. For example, a neural network can be designed to 
predict the shape of a corrosion defect or classify an indication based on information 
contained in the MFL signal. Although the calculations are simple, the large number of 
computations performed in concert allows neural networks to perform fairly 
sophisticated tasks. 

The following figure is a graphical representation of the structure of a neural network. In 
the following figure, the input to a node (a connecting point) is shown by lines from the 
left and the output is shown by lines to the right. Each line represents a calculation, 
such as multiplying an input value by a constant. Each input parameter (e.g., signal 
amplitude, length, etc.) is multiplied by a (different) constant and used as input to the 
nodes. The action taken on the input is termed weighting or synaptic weighting. 
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A nonlinear function of the sum of the inputs to a node is calculated at the node. The 
function that is applied at the node to the sum is called the nodal function. Each nodal 
function has a set of parameters that further define it. The nodal functions are the 
building blocks used for fitting the neural network's output to the training data. Nonlinear 
basis functions allow nonlinear fits to the data, which are needed for more complicated 
problems. 

In a sense, each nodal function has a shape associated with it (for example, the shape 
of a logarithmic curve), and the output is made by summing various combinations of 
these shapes. For simple neural networks, such as those that make binary or yesho 
decisions, sigmoidal or arctangent functions work best. For more complicated problems, 
such as predicting the shape of corrosion, certain functions are better suited than others 
in representing the intended output. 

Gaussian basis function 

In work done to date, several types of basis functions have been considered. In the 
multilevel perceptrons, a sigmoid function was used. The sigmoid function is a gradual 
step, from zero to one, as its input varies from negative to positive. It works best for 
binary decisions, such as whether a defect signal is from mechanical damage (output 
equals one) or not (output equals zero). The network can be trained to identify 
mechanical damage if the output is larger or smaller than some value. 

For the more complicated problem of predicting defect geometry, radial basis functions 
were employed. Several radial basis functions were considered including Gaussian (an 
inverted bell shape), logarithmic (values ranging from negative infinity to positive 
infinity), and a multiquadric (values ranges from a finite number to infinity). 
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Typically, radial basis functions are centered about some point (a fixed value of an input 
parameter) and they vary with the "distance" or difference from that point. Radial basis 
functions provide a better ability to simulate the shapes of corrosion defects. They are 
considered good approximators near the training data but are less accurate away from 
the training data. 

In addition, a third set of basis functions, called wavelet functions, is being investigated. 
Wavelet functions are similar to radial basis functions. However they offer better 
approximation properties both locally and globally. 

For more information on neural networks, refer to An Introduction to Computing with 
Neural Nets, Neural Networks: A Comprehensive Foundation, and Multivariate 
Functional Interpolation and Adaptive Networks. 
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Overview of Training for Perceptron Neural NetworksHayking9 

Determining the unknown parameters in a neural network is called training. Training is 
analogous to fitting a nonlinear curve through several points - there are many curves 
that pass through the same set of points. The key is to determine a set of parameters 
that reasonably matches the data and that can be extrapolated or interpolated to other 
sets of data. Forcing the fit to exactly match the data is possible, but usually produces 
poor results. When this happens, a neural network is said to be over-fitted. This is 
possible when the amount of training data is limited and is to be avoided. 

The process of learning the values of the unknown parameters is at the heart of neural 
networks. The choice of the training method is important. Different methods have been 
developed (or are being developed in this program) with the goal of efficiently learning 
the parameters and producing a network that works well over a wide range of input 
conditions. 

Training Example 

Understanding the learning process of a neural network may not be intuitive. While 
different techniques are used, the method outlined below is fairly typical for multilayer 
perceptrons. The procedures for training radial basis function and wavelet networks are 
different. 

Typically, at the start of training, random values are assigned to the unknown 
parameters. Hence, at this stage, the neural network will produce some arbitrary output. 
One set of input data is used, and the calculated output is compared to the desired 
output. As expected, they will differ. Next, the derivative of the output is taken with 
respect to each unknown parameter - that is, calculations are made to determine the 
gradient of the error function (how the output will change as each parameter changes 
i nd e pe nde n t I y ) . 

Based on the gradients, a change is calculated for each parameter. Then, the changes 
are applied and the process is repeated with the next set of input data. If the problem 
were linear, one set of changes might produce a network that matches the data exactly. 
Usually, though, a change in one parameter affects all other calculations, and so, the 
network's output does not match the data. The process is repeated, and it is continued 
iteratively, until the remaining error falls below some arbitrary threshold. This process is 
known as learning. 

The process of determining the derivatives and using them in the manner described 
above is called backward propagation. The term backward propagation is used to 
suggest that the errors are corrected back through the network using the derivatives or 
gradient of the error function. 

Training the radial basis function networks and the wavelet networks is far more 
straightforward and does not involve the use of iterative procedures. The training 
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procedure typically involves the inversion of a data matrix and is consequently easy to 
implement. 
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Graphical Rep resen tat ion of Percept ron Neural Networks 
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Additional Details on the Prediction of Two-Dimensional Stress 
F i e I d s [Ivano@81 

Test Measurements 

Two-dimensional stress fields were studied using defects installed on 4-inch by 1/4-inch 
by 16-inch 101 8 cold-finished flat steel plates. Two defects were placed on each plate to 
avoid the blooming effect of MFL signals for defects that are very near each other. 

Two basic methods were used to prepare the defects. Simulated gouges were made by 
pressing a steel ball-bearing on the steel plate with a hydraulic pressure machine. Two 
different sized ball-bearings and ten pressure levels of the hydraulic pressure machine 
were used for a total of twenty gouge defects. A set of twenty corresponding metal loss 
defects was made by drilling out material from the plate. 

The steel plates were magnetized with a custom magnetizer. The three components of 
the MFL signal from the defect were recorded with a Gauss meter for varying 
magnetization levels from about 1,300 N m  to 34,000 Nm.  The specimens were 
magnetized to saturation, and the magnetizer was removed in order to measure the 
residual field signals. 

Data were recorded for all defects for the active leakage field at saturation and the 
corresponding residual leakage field signals. Results showed nearly identical MFL 
signatures from the gouges and the metal loss at saturation. However, a large 
difference in the residual field signals was observed. A very small residual leakage field 
signal was recorded for the metal loss defects, while the leakage field was larger for the 
gouge defects. 
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Residual stress distribution 
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F i n i te-el em e n t Model i n g ['vanov97] 

Finite element modeling involved a structural analysis of the specimen in order to obtain 
the distribution of stresses from known loading conditions. An active "stress profile" was 
defined as the aggregate stress around the defect. The stress profiles and 
corresponding residual MFL signals were used as training data for the stress 
characterization algorithm. EFinite Element Modeling of Defect Installation Process. 

Mapping from the MFL signal to the stress profile was accomplished using a radial basis 
function network. The input to the network was taken from the residual MFL signal. In 
order to determine the optimal network configuration (Le., to find the synaptic weights), 
both the training data and the support of the radial basis functions were varied (the 
support is one of the parameters that defines the functions). 

The network was tested with MFL signals that were not part of the training set and the 
predicted stress profiles were compared with those generated by the mechanical 
damage finite element model. Typical results are shown below. The agreement between 
the predicted and desired profiles indicates that this method shows considerable 
promise. 
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Two-dimensional stress distributions 
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Finite-Element Modeling of Defect Installation Process 

The defect installation process was modeled by applying pressure on a small spherical 
pit on the top surface of a steel plate. The elastic behavior of steel was represented with 
a Young's modulus of 3 0 ~ 1 0 ~  psi, a Poisson's ratio of 0.3 and specific density of 
0.283 Ib/in3. The model was meshed with tetrahedral elements and care was taken that 
the element side length ratio did not exceed 12. The nodes on the back of the plate 
were restrained (all degrees of freedom equal to zero) to avoid the change of geometry. 

The load was perpendicular to the outer surface: therefore, the largest strains and 
stresses appear normal to the pipe surface. The external magnetization is along the 
pipe axis and is perpendicular to the largest component of the stress vector. The effect 
of compression was modeled by increasing the permeability, and similarly areas under 
tension were modeled by lowering their permeability values. 
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The results of elastic, static structural analysis for a load of 10 ksi are shown above. The 
top figure represents the distribution of the stress perpendicular to the top surface of the 
specimen, while the bottom figure shows the one-dimensional "stress profile" 
corresponding to that stress distribution. The elements directly under the pit are under 
compression, while the nodes on the edge of the pit experience tension. This is 
reflected in the "stress profile" as positive peaks above the edges and a negative peak 
under the pit. 
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